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ABSTRACT

The purpose of this thesis is to find suitable ways to design feedback compensators
for high order systems by using Root-Locus methods.

As a starting point we will examine a motor amplidyne svstem and a position con-
trol system that were previously designed using Bode methods. Then we gencralize the
mecthod and extend it to other svstems.

The final subject of this thesis is to design fecdback compensators as filters by using

state feedback coellicients to defline zeros of the filter, then we extend this idea to build
cascade filters.
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I. INTRODUCTION

Modern control systems may be compensated by placing a suitable filter in cither
the forward (cascade} path or in a feedback path.

Mainly feedback svstemis have the advantage that the output follows the command
more accurately, so the steady state error is less, the bandwidth 1s greater, and the speed
of response is faster. Also we can sayv that the ellect of external disturbances and internal
changes in the parameters or structure of the system is significantly reduced.

The conventional and more common way to design a Feedback compensator to
meet a given sct of specifications is the Bode plot method, by determining a suitable gain
cross-over frequency and 111 _urve.

In this thesis we will try to find some rules to do the same design by using Root-
Locus mcthods. To achieve this, first we will examine several designs then tryv to put the
general ideas i a set of ruices.

Simulation studies emploved Dynamic Simulation Language (DSL) and [wald

package m the IBM 3033, 4381 main frame.




II. PRELIMINARY EXAMPLES

A. HIGH GAIN MOTOR AMPLIDYNE SYSTENM
To study the ideas for feedback compensation first we choose an industrial design
that evists and is available for comparison. Figure I shows the whole compensated

svstem, where

K1 —»  Gf >

H
Figure I.  Originai Compensated System
K, =143 (1)
— 1209.8 )
) =TT 57.90)(s + 0.1259.39) ()
0.1375'(s + 62.5)(s + 71.65
H(s) = Al ) (3)

(s+ 1)(s+ 5.20)(s + 623)

Figure 2 shows the open loop Bode plot for the uncompensated system. The un-

compensated svstem is badly unstable.
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We may use two different kinds of block diagram manipulation to analyze this svs-

tem. First is the ordinary manipulation shown at Figure 3, where

K1 Geq >

Figure 3. Ordinary Manipulation

GO96SS3 (s + 1)(s + 5.20)(s + 625)

Geg = s(s + 0.003F0.006)(s + 39.35)(s + 79.2)(s + 275.45%,/843.8)

()

Analvsis of this transfer function provides the open loop Bode plot, Root-l.ocus,
magnified Root-Locus and time response of the system which are given by Figures 4 -
7. Since there is no pole in the right half plane, we can get phase margin and gain margin

from thesc plots.
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The second type of manipulation is done to get more information using the Root-
Locus method. The first step for this is shown at I'igure 8. Then with the appropriate

block diagram reduction the svstem becomes as in Figure 9, where

——-;Q———b K1 Gi >

1/K1jl¢— H |j¢—

Figure 8.  First Step For Manipulation

H1

r—.

Figure 9. Final System For Root-Locus Examination

17905
s+ 579.97)(s + 56.14)(s — 26.98F/45.19)

G3(s) = ( (6)




0.009265°(s + 62.16)(s + 71.92)

Ii(s) = (s+ 1)(s + 5.24)(s + 625.33)

(7)

By using the loop transfer function GIlI(s) to draw the Root-Locus we mayv examine
the system for root movements. Since the G(s) has two poles in the right half plane, the
Bode plot cannot be interpreted {rom the point of view of gain margin or phase margin,
but it shows the stability of the system.

The root locus for the uncompensated system is shown at Figure 10.

I'rom this point we can proceed to explore the design procedure of the designer.
Iirst of all, since this design was done using Bode design methods, it will be helpful to
get the G1 and 1’11 magnitude curve which is shown at Iigure 11 for the original svstem
at Figure 1.

As we may see from the block diagram there are zeros at the origin. For this svstem
we need at least two zeros to keep the system tyvpe number unchanged. Also the spec-
ifications show that we want to have a very high error coeflicient for stcady state accu-
racy and a very narrow bandwidth. Because of these characteristics, there is a dipole near
the origin. It is possible to see this on the Bode plot of Figure 11.

The designer could have put the third zero very close to origin but in that case
building the system might ditlicult.

Since other poles are far awayv compared with these zeros and dipole, these compo-
nents will decide the syvstem bchaviour.

The Bode plot, Root-Locus and magnified Root-Locus around the origin for the
loop transfer function GlI(s) are given by Figures 12 - 14. Since we have roots in the
right half plane, the Bode plot cannot be interpreted for phase and gain margin values.

As a result of this problem we may say that for high error cocflicient and narrow

bandwidth svstems we mayv need zeros at the origin and a dipole very close to the origin.
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B. POSITION CONTROL SYSTEM
As a second example we chose a position control svstem having an amplidvne and
a DC armature controlled motor as its power element. Figure 15 shows the original

compcensated system, where

Kc » Gl —» G2 !

- G3

Kh

Figure 15.  Original Compensated System

K, =10.233 (8)
K, = 0.061 (9)
- _ 12000
Oy = 0.078s + 1 (10
. 1
2= T8ss0.0402s 1 1) (1
Gy =0.333s (12)
G4 = 0.0046s* (13)
S2 g
Gs = ——————— (14

s+ 655+ 10

16




Figure 16 shows the open loop Bode plot for the uncompensated system. The un-

compensated svstem is badly unstable.
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Again we may use two different kinds of block diagram manipulation to analvze this
system.

First is the ordinary manipulation shown at Figure 17, where

Figure 17.  Ordinary Manipulation

K, =0.233

12000(s> + 6.55 + 10)
0.0059s° + 3.62855s% + 247.14455° + 14.455% + 18.8s

~

G.,

(10)

Analysis of this transfer function provides the open loop Bode plot, Root-Locus.
magnified Root-Locus, and time response of the system which are given by Figures 18
- 21

Since there is no root in the right half plane, we can get phase and gain margins from

this plot.

18
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The second type of manipulation is done to get more information using the Root-

Locus method. The first step for this is shown at Figure 22.

R;Q » Kc G a2 ~ >

G3

Kc/KHe—| G5 .
Ga

Figure 22. First Step For Manipulation

Then with the appropriate block diagram reduction the system becomes as in

Figure 23, where

Figure 23. Fitial System For Root-Locus Examination

23




47389%.3

G = 5 =36.72%,66.9)is 7 91.73)

(17)

_0.00125(s + 72.39)

(s+ 2.5)(s+4) (18)

By using the loop transfer function GHi(s) to draw the Root-Locus we may examine
the svstem for root movements. Since G(s) has two roots in the right half plane, the
Bode plot of this cascade combination cannot be interpreted from the point of view of
gain margin or phase margin, but it shows the stability of the system.

The root locus for the uncompensated system is shown in Figure 24. From this
point we can proceed to explore the design procedure of the designer.

First of all, since this design was done using Bode design methods, it will be helpful
to get the G and 1I'H magnitude curve which are shown in Figure 25 for the original
svstem in Figure 15.

As we may see from the block diagram there are three zeros at the origin. As in the
first example we have to have at least one zero at the origin to keep the system type
number unchanged. Also since we want to keep the error coeflicient unchanged we have
to have one additional zero at the origin. The reason for the third zero is to provide a
dipole near the origin to make the svstem have a ve v high error coeflicient for steady
state accuracy and a very narrow bandwidth.

For the GIli(s). the Root-Locus and a close look around the origin to the Root-
Locus are given in Figures 26 and 27.

Now we may want to see the effect of removing some of the components {rom the
compensator. First, if we remove the third zero the Root-Locus becomes as in
Figure 28. The svstem is unstable. Now we may want to bend the loci by moving onc
of the poles close to the origin toward left. If we start to move the pole which belongs
to the dipole at s = -2.5; Figure 29 shows the condition when this pole is at s = -30.
The system is still unstable. By putting this pole further from the zero at s = -72.39,
we can bend the loci toward the left half plane. We may interpret this as follows : when
we move the pole to the left we increase the sum of the poles and therefore the sum of
the roots. This affects the Root-Loci by moving the asymptote centroid to left. so the
loci from the right half plane cross into the left half plane. Figure 30 shows the Root-

Loci for this condition. Now we may want to examine the specifications of the system

24




and compare them with our specifications. Since the dominant roots are far away {rom
the origin the accuracy and damping will decrease, and the bandwidth of the svstem will
increase. These do not agree with our specifications.

After all these trials and sample designs we may summarize the results as a set of
rules for design of feedback compensation :

1. To keep the system tvpe number unchanged put at least the same number of zeros
at the origin as the original system’s type number.

2. To keep both the system tvpe number and the error coellicient same unchanged.
the number of zcros at the origin should be N + 1, where N is the type number
of the uncompensated syvstem.

3. To have high error coceflicient and narrow bandwidth for steady state accuracy in-
clude a dipole close to the origin. Put the zero of the dipole at the origin for ease
in physical realization.

In the next chapter we will apply these rules to several diflerent Kinds of problems

and sce whether they work or not.
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G and 1/H Magnitude Curves
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III. DESIGNING COMPENSATORS

A. NON-MINIMUM PHASE SYSTEMS

Before studving systems that have all poles and zeros in the left half plane, we may
want to examine non-minimum phase syvstems. If we have a root or roots in the right
half plane we are not able to use Bode methods for designing compensators, therefore
the Root-Locus method will be the only useful tool.

To illustrate we chose the following transfer function, which is the roll mode of a

vertical take-ofl aircraft. rigure 31 shows the original system, where

Figure 31. Original System

77.187(s + 0.225 + j0.6607)
(s — 0.0433)(s + 1.46d)(s + 0.21 +0.844)(s + 48.35 + j49.34)

G(s) = (19)
As we may see from the transfer function, there is a real pole in the right half planec.
For this reason we can not use Bode methods to compensate the system. The open loop
Bode plot, Root-Locus and magnified Root-Locus for this system arc given by Figures
32 - 34,
To find the closed loop roots we make the block diagram manipulations. Then the

closed loop transfer function becomes :

77.187(s + 0.225 + j0.6607)
s — 0.036)(s + 0.21 +,0.84)(s + 1.47d)(s + 48.34 + jd8.72)

Gi9) = 7 (20)
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I'rom this point on we may start to think in terms of Root-Locus and loop transfer
functions.

Since we will want to have loci from the pole in the right half plane toward the left.
we have to put cither a zero or a pole to the left of this pole. Putting a zero at the origin
will not help us, because in that case we alwavs will have a root in the right half plane.
So we should put the compensator poles and zeros somewhere in the left half plane.
Choosing the specific zero and pole locations is an engineering decision and mostly de-
pends on the specifications. With this problem we will try to illustrate three diflerent
combinations.

First put a zero close to the origin and a pole far away, both in the left hall plane.

In this case the loop transfer function becomes as in Figure 35, where

G1(S) >

H1(S)

Figure 35, Loop Transfer Function Form

T7.187(s 4+ 0.225 F j0.6607)

Gi(s) = (s —0.036)(s + 0.21 F jO.84)(s + 1.47d)(s + 48.34 F j48.72) (21)
Ki(s+1) N
1,(s) = 1 30) (22)

The Root-Locus and magnified Root-Locus for the loop transfer function are given
in Figures 36 and 37. As we may see from the plots there is a root-locus segment be-
tween the pole in the night half plane and the zero at -1.

To find the value for K|, we should get the tabulated points for the Root-Locus and
see for which gain all of the roots are in the left half plane. For this particular filter the
minimum value for K| was 203.7. We selected K, = 500 arbitrarily. For this value, our

svstem becomes as in Figure 38, where
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77.187(s + 0.225 F_j0.6607)

G(8) = (s Z0.0339)(s + 1.463)(s + 0.21 T J0.83)(s + 48.35 T49.39) (23)
S00(s + 1)
H(s)= A0 (24)
R i(A} > G(S) ‘-
H1(S)

Figure 38. Compensated System

If we make the block diagram manipulation, we get the syvstem shown in

Iigure 39, where

» G (s) +C

Figure 39. Resulting Equivalent G

77.187(s + 0.225Fj0.6617)(s + 50)
(s + 0.0269)(s + 0.2355,/0.842)(s + 1.533)(s + 49.67)(s +48.417,38.63)

Gegls) = (25)

The Root-Locus, magnified Root-Locus, open loop Bode plot and time response lor
the compensated system are given in Figurcs 40 - 43. As we may see {rom the Bode plot

the svstem is stable but we do not have enough gain.
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We may handle this by putting another gain block outside the minor loop. The final

svstem then becomes as in Iigure 44,

R—;Q—v K |—> G(S) 5

Hi(s)[€¢—

Figure 44.  Final Compensated System

K may be selected according to the specilications. We chose K = 100 for illus-

tration.

77.187(s + 0.225 F j0.6607)
(s — 0.0434)(s + 1.963)(s + .21 F,0.833)(s + d8.35 F 449.34)

G(s) = (20)
S00(s + 1)

1,(s) = G+ 30)

(27)
The open loop Bode plot and time response for this particular values are given in
Figures 45 and 46. We may change the loop gain according to the specifications. Eflects

of changing the loop gain will be shown for the third combination.
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The second type of configuration puts two complex zeros close to the origin and two
poles far away, all in the left half plane. In this case the loop transfer function becomes
as in Figure 47, where

G1(S) >

H2(S)

Figure 47. Loop Transfer Function Form

~ 77.187(s + 0.225 F.j0.6607)
T (5= 0.036)(s + 0.21 Fj0.84)(s + 1.97d)(s + 48.34 T j48.72)

Gy(s) (28)

1(2(3 +1 1])

y(s) = (s+ 20)(s + 30)

(29)

The Root-Locus and magnified Root-Locus for the loop transfer function are given
in Figures 48 and 49. As we can see from the plots we moved the loci teward the left

half planc.
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To find a value for K, , we should get the tabulated points for the Root-Locus and
see for which gain all of the roots are in the left half plane. For this particular hilter the
minimuim value for K; was 2125.8. We selected K2= 2500 arbitrarily. For this value, our

svstem becomes as in Figure 50, where

77.187(s + 0.225 F j0.6607)
s — 0.0434)(s + 1.46d)(s + 0.21 F/C.844)(s + 48.35 T j49.3d)

G(s) = 0 (30)

2300(s + 1 F)
(s + 20)(s + 30)

R ;9 > > G(S) ‘s

H2(S)

Hy(s) =

Figure 50. Compensated System

If we make the block diagram manipulation, we get the system shown in
Figure 51, where

eq

Figure 51. Resulting Equivalent G

77.187(s + 0.225 T j0.6617)(s + 20)(s + 30)

= 3
Gegls) = T 0.007)5 + 0.225/0.84)0s + L.A27)(s + 245T/63)s + 48875983 2
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The Root-Locus, magnified Root-Locus, open loop Bode plot and time response for
the compensated system are given in Figures 52 - 55. As we may see {rom the Bode plot

the syvstem is stable but the gain is too low.
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Figure 32. Root-Locus For Final System
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Bode Plot Without Outside Gain

Figure 54.
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(0

We may handle this by putting another gain block outside the minor loop. The final

svstem then becomes as in Figure 56.

K G(S) >

[ H2(S)|e—

Figure 56. Final Compensated System

K may be selected according to the specifications. We chose K = 100 for illus-

tration.

77.187(s + 0.225 F j0.6607)

6s) =452 0.043d)(s + 1.464)(s + 0.21 Fj0.83d)(s + 43.35 T j49.34)

(33)

_2500(s + 1 F)
T (s + 20)(s + 30)

,(s) (34)
The open loop Bode plot and time response for these particular values are given in
Figures 57 and 58. We may change the loop gain according to the specifications. Effects
of changing the loop gain will be shown with the next combination.
The third type of combination puts two complex zeros and one real pole close to the
origin and one pole far away, all in the left half plane. In this case the loop transfer

function becomes as in Figure 59, where
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G1(S) >

H3(S)

Figure 59. Loop Transfer Function Form

G T7.187(s + 0.225 F j0.6607) 35
= 5
i(s) (s — 0.030)(s + 0.21 FjO.84)(s + 1.474)(s + 48.34 F j48.72) (33)

Ry(s + 2 F j0.5)
(s+ I)s + 30)

Hy(s) = (30)

The Root-Locus and magnified Root-Locus for the loop transfer function are given

in Figures 60 and 61. As we mav see [rom the plots the locus is moved toward the left

half plane.
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To find a value for K, we should get the tabulated points for the Root-Locus and
see for which gain all of the roots are in the left half plane. For this particular filter the
nunimum value for K; was 81.6. We selected K; = 250 arbitrarily. By this, our svstem

becomes as in Figure 62, where

R ;Q > > G(S) %

H3(S)

———t

Figure 62. Compensated System

i 77.187(s + 0.225 F j0.6607)
T (s —0.043d)(s + 1.46d)(s 4+ 0.21 Fj0.84d)(s + 48.35 Fj49.34)

G(s) (37)

250(s + 2 F 0.5))
{s+ 15+ 350)

Hy(s) = (38)

If we make the block diagram manipulation, we get the svstem shown in
Figure 63, where

77.187(s + 0.225 Fj0.6617)(s + 1)(s + 50)
T (s +0.19)(s + 0.236 Fj0.87)(s + 1.52)(s + 49.84)(s + 48.37 F jd$.6)

Gegls) (39)
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Figure 63. Resulting Equivalent G

The open loop Bode plot and time response for the compensated syvstem are given
in [Figures 64 and 635, As we can see from the Bode plot the system is stable but the gain

is too low.
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We may handle this by putting another gain block outside the minor loop. The final

svstem then becomes as in igure 66.

B—;Q—» K |—»> G(S) °

H3(S)je— |

Figure 66. Final Compensated System

K may selected according to the spccilications. We chose diflerent values for illus-

tration.

77.187(s + 0.225 F j0.6607)
(s — 0.043d)(s + 1.464)(s + 0.21 Fj0.83d)(s + 48.33 F j49.34)

Gls) = (40)

250(< + 2 F 0.5))

(s+ s+ 50) 1)

Iy(s) =

The open loop Bode plot and time response for K= 100 are given in Figures 67 and

6S.
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We can change the loop gain according to the specifications. Figures 69 and 70 show
the time responses for this system when this gain is 500 and [000. As we may sec {rom
the time response we can change the amount of overshoot by changing this gain.

As a result of this problem we can summarize the steps for designing feedback
compensators for non-minimum phase syvstems as following :

I. Find the closed loop transfer function and get the Root-Locus for this.
2. Pick the filter poles and zeros according to the Root-Locus rules.

3. Get the Root-Locus for the loop transfer function. Tabulate the gain values, and
select the gain that puts all the roots to the left half plane.

4. Rearrange the system. Look for the Bode plot and time response. If thev arc ac-
ceptable, leave it that wayv otherwise select another gain outside the munor loop.
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B. FLEXIBLE ROCKET CONTROL SYSTEM

As a second example we chose the control system of a flexible rocket which is shown

in Figure 71. This example was extracted from Ref. 1.

Structure Structure and
Demod. Filter Servo Rigid Body

15} Gd F» Gsf - Gs T + 0.3Gr

C

Figure 71.  Original Uncompensated System

Gx(s) is the transfer function for the rigid body and is defined as :

| 7.21 )
O/ = T T 6)(s = 1.95) (42
RER) \
Gols) =175 333) (49
6,(5) = ——21%0 )
sT+ 4225+ 2750

. (s + 705 + 4000)(s + 225 + 12800) )
(’SF(S) = 2 . _ 2 (4\)

(s° 4+ 30s + 53810)(s” + 30s + 12800)

And the structure is defined as ;

A 0.686(s + S3)(s — S3)(s2 = 152.25 + 14500)(s* + 153.85 + 14300) ,
1(s) = {d06)

72

(24 5 + 6035)(s? + d5.55 + 2660)(s* + 2.51s + 3900)(s> + 3.995 + 22980)




After perfornung all calculations the total system becomes as in Figure 72, Since
the order of the numerator and denominator arc quite large, the transfer function is split

into three parts to (it on the page.

Figure 72. Combined Uncompensated System

Gs) =G, x G, x G4 where

39134576.25(s + 35 T jS2.7)(s + H F,112.6)

. .

o1 = T 1557976 + 3112000 + 333G 4 211 7549) =7

. (s — 2138 F21.79)(s 4 72.76 F,100.24)(s — 83.1 T j61.82) a5

02 = T 2375 T 40.29)s + 1233 T 00 dd)s + 1993 7151375 — 148 8
T j24.02

* (s + 11.6 T j24.02) "

( =
70T s+ LO)(s + 0.5 T j24.0)

As we may see from the transfer function we have four zeros and a real pole in the
right hall planc. In addition to this most of the poles and zeros which are in the left half
plane arc very close to the imaginary axis.

i he Root-Locus for the open loop uncompensated system is given by [igure 73
The svstem is unstable. Since there is a real pole in the right half plane we can not easily
interpret the Bode plot for this svstem.

The next step is to find the loop transfer function as in previous examples. By per-
(rrming the regular block diagram manipulation the closed loop transfer fu: .tion be-

comes G,(s) = G,l5) x Gus) x G(s5) which s
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39134576.25(s + 35 F jS2.T)(s + VUL F j112.6)(s + 11.06 F j24)

= 50
335+ LOFISLA) (s + 15 Fj112.2)(s + 138 F,74.5) ()
N (s +72.8 Fj100.2)(s — 83 F j61.8)(s — 21.6 F ;21.8) 51
als) = (s+ L5 Fj00.d)(s + 19.9 Fj52.6)(s + 1 Fj24)(s — 0.5 F jd.5) M

1 .
Ge(s) = (52)

(s + 24.8 F/44.17)

From this point on we may start to think in terms of Root-Locus design. As we saw
from the loop transfer function we have a pair of complex poles and four zcros in the
right half plane. In addition to this most of the poles in the left half plane are very close
to imaginary axis and there are four zeros in the right half plane. So probably some of
the roots are going to end up at these zeros. This will give us a gain constraint.

Since we have peles close to the origin and imaginary axis in the left half plane,
putting a zero or zeros at the origin would not help us, because in this case we alwavs
will have roots in the right half plane. So we decided to use a general tipe of
compensator which is two zeros close to the origin and two poles far away. The purpose
of the zeros was to have loci from the poles in the right half plane terminate on these
zeros. We made several trials with this tvpe configuration but none of them worked.
An illustration of this i1s shown in Figure 74, where G (s) i1s the closed loop transfer

function and

Yo

Ge

H1

Figure 74.  [Illustration of General Configuration

98.6(5 + 0.46 T jd.482)
(s + 100)(s + 200)

1(s) = (53)
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The Root-Locus for this case is given in Figure 75.
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As we may sec the system is unstable, because roots in the left half plane were
moving faster than the roots in the right half plane.

With this type of problem, since the system has a 12 order numerator and 17" order
denominator, designing the compensator by just examining the system would be impos-
sible or require many trials. So we decided to use the function minimization subroutine
in the DSL package in the mainframe. The parameters used in the subroutine and the
function minimization program are given in Appendix A and B.

As the result of the program we found that we have to put the poles of the
compensator ciose to the origin and to the left of the zeros which belong to the
compensator. By putting these zcros and poles in this combination, we make the roots
in the right half plane move faster. Figure 76 shows the block diagram for the compen-

sated system, where G,(s) is the closed loop transfer function and

Yo

Gce

H2

Figure 76. First Resulting Compensator of Function Minimization

14.72(s + 0.875 T j2.058)
(s + 2 F/8.343)

11,(s) = (34)
The Root-Locus for this compensation is given in Figure 77. By getting the tabu-
lated root locations, we see that for a Root-Locus gain of 0.068 we get all roots in the

left half plane. Then our final compensator becomes ;

sS4+ 1.755 4 5 ]

1,(s) =
? st 4+ ds+73.6
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The time response for this case is given in Figure 78. As we may sece the system is

stable but the scttling time is a little long. According to the specs we may want a faster

svstem than this.
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Figure 77. Root-Locus for First FM Resuit
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Running the Function Minimization program but changing { and w, to get an out-
put with the desired settling time, we got the coeflicients for this compensator as shown

in Figure 79. G(s) is the closed loop transfer function and

[

Ge

H3 (¢—

Figure 79. Second compensator Resulting from Function Minimization.

8.11(s + 1.1531)(s + 4.878)
(s + 3.672 Fj5.67)

IJJ(S) = (56)
The Root-Locus for this is given in Figure 80. Again by getting tabulated root lo-
cations we sce that for a Root-Locus gain = 0.124 we get all roots in the left half plane.
‘Then our final compensator becomes ;
ST +6.0311s + 5.625

Hy(s) = (57)
() s2 4+ 7.34ds + 45.632

The time response for this case is shown in Figure 81. As we sce the settling time

and amount of overshoot are within specific limits.
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Then our total compensated system becomes as in Figure 82, where G(s) 1s the Open

loop transfer function and

g
Yo

H3

Figure 82. Block Diagram of Total Compensated System

(s+ 1.1531)(s + 4.878)

) == 5T a5

As a result of this problem we mav gencralize that, if we have components close to
the imaginary axis in both lett and right half plane, we have to use pole-zero couples
close to each other as a compensator. In the next chapter building filters by using pole

placement and state feedback methods will be discussed.
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1V. DESIGNING FEEDBACK COMPENSATORS USING POLE
PLACEMENT

To compensate the systems by state feedback, we may use several computer pro-
grams to find the feedback coeflicients. Sometimes observing or feeding back some of
the states may not be possible. For such cases we might have to build an estimator to
estimate the states.

The purpose of this chapter is to investigate whether it is possible to build a filter
by using these feedback coeflicients as zeros and adding extra poles to the feedback
path.

To illustrate this we chose the following plants.

A. ALL COMPONENTS ARE IN THE LEFT HALF PLANE

For this case the open loop transfer function of the plant is ;

_ 1000
Tos(s+ I)(s 4+ 2)(s + 10y

G(s) (39)

We want to design a feedback compensator {a filter) to stabilize this system after
determining the state feedback coeflicients. Since the uncompensated system is fourth
or¢ , in order to have full state feedback we have to name four roots.

In this thesis we used the SVS (State Variable Systems) [Ref. 2] program.

To use the computer program we have to determine n-1 roots (where n is the svstem
order) and find the fourth root from the characteristic equation to enter the program.

Our desired roots are
sjp=—1%/2,5=-4 (60)
Then H(s) becomes
H(s)=5"+ 65% + 135+ 20 (61)
If we get the GH(s) to find the characteristic equation

1000(s* + 65% + 135 + 20
Gli(s) = s £ 0T+ 130+ 20) (62)
s + 135" + 325"+ 20s
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The characteristic cquation then becomes
5T+ 101357 + 603257 + 130205 + 20000 (63)
And the roots of the characteristic equation are ;

S, =—3.988, 5,3 = —0.997 F j1.996, 5, = ~1007.02 (64)

The root locations obtained with this design are within 0.3 9 of the desired values
and the 4* root is at —1007.02 .

Now we may go to the SVS program te find the state feedback coeflicients which
would place the roots exactly at —4, — 1 F /2, —1007.02. The state feedback coefficients

we gut from SVS are ;
H(s) = 0.9998s" + 5.9825% + 12.91s + 19.8 (65)

These coeflicients are negligibly different from the ones we obtained by multiplying
the desired roots. For accuracy we used the coeflicients that we got from SVS.

For all practical purposes we mav accept the &y which is coeflicient of s%, as 1. Our
state feedback compensated svstem then becomes as in Iigure 83, where G(s) is the

open loop transfer function and

PO S

H(s)

Figure 83. State Feedback Compensated System.

H(s)=s"+ 59825 + 12915+ 19.8 (66)
H(s) in factored form is
[(s) = (s + 0.996 T j1.993)(s + 3.997) (67)

Root-Loci for the loop transfer function Gli(s) are given in Figure 84.
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To preserve the unity feedback we use block diagram manipulation and the system
then becomes as in Figure 85.

_ 19.8 »—>{ 6(s) >

Hi(s) j4—]

Figure 85. The Form of The System With Unity Feedback.

In Figure 83, G(s) 1s the open loop transfer function and
H(s) = s(s + 2.99 F 1.993) (68)

To convert the feedback compensator to make it more realizable as a filter, we have
to choose the locations of the extra poles quite far away so they can not aflect the
- transient behaviour of the svstem. If we put the extra poles into the system form shown
in Figure 83 we get the required gain easily. The new system then becomes as in

Figure 86, Where G(s) is the open loop transfer function and

K(s + 3.99)(s + 0.996 T j1.993)
(s + 300)(s + 400)(s + 300)
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H2(s)

Figure 86. System With Extra Poles,

To find the value of the K we get the tabulated root locations of the Root-Locus for

the loop transfer function G/{(s),which is shown in Figure §7.
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Root-locus gain K to bring the roots where we want them was K = 1.905459 x 107
. By using the same manipulation as in Figure 85 if we redraw the block diagram of the
system to preserve the unity feedback we get the final compensated system shown in
Figure 88.

R I
s O—{S T[T |——»

H3(s) le—

Figure 88. Final Compensated System

G(s) is the open loop transfer function and

g 7
G](S) . 19.8 x 1.905459 x 10

T (s + 300)(s + 400)(s + 500) (70)

1.908459 x 107s(s + 2.99 + j1.99)
(s + 300)(s + 400)(s + 500}

Hy(s) = (71

The time responses for only state feedback and for the filter compensated casec are
Figures 89 and 90. As we may sce from the transient responses since all roots are very
close to the desired places the time responses are almost exactly same. The only disad-
vantage of this configuration may be to build two identical sets of poles to use in dif-

ferent places.

B. NON-MINIMUM PHASE SYSTEMS
As a second example we chose a non-minimum phase system to check if the idea
works for both cases.

For this case the open loop transfer function of the plant is

_ 1000
T os(s = I)(s + 2)(s + 20)

G(s) (72
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We want to design a feedback compensator (as a filter) to stabilize this svstem after
determining the state feedback coeflicients. Since the uncompensated system is fourth
order, in order to have full state feedback we have to name four roots.

To use the computer program we have to determine n-1 roots (where n is the system
order) and {ind the fourth root from the characteristic equation to enter the program.

Our desired roots are ;
Sia==1Fjl,s55=-3 (73)
Then [l(s) becomes
H(s)=s+55*+8s+6 (74)
If we get the GH(s) to {ind the characteristic equation

1000(s> + 55> + 85 + 6)

S = T + 185 — 405 )
The characteristic equation then becomes
st + 10215% + 501857 + 79605 + 6000 (76)
And the roots of the characteristic equation are
Sy =-2.967,5,;=-0.988 F 101, 5, = —1016 (77)

The root locations obtained with this design are within 1.1 9; of the desired valucs
and the 4 root is at -1016.

Now we may go to the SVS program to find the state fecdback coeflicients which
would place the roots exactly at —1 F /1, — 3, —1016.

The state feedback coeflicients we got from SVS are
H(s) = 0.99995s° + 49955 + 7.952s + 5.956 (78)

These coeflicients again are negligibly different from the I(s) we first accepted but
we used the ones we found from SVS.
[For all practical purposes we may accept the &, which is coeflicient of s* as 1. Our

state fecedback compensated svstem then becomes as in Figure 91.
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B——;( G(s)

| o

Figure 91. State Feedback to Compensate The System

G(s) is the open loop transfer function and
H(s) = 5 +4.9955% + 7.9525 + 5.956 (79)

H1(s) in factored form is

1(s) = (s + 0.995 Fj0.998)(s + 2.998) (80

The Root-Locus for the loop transfer function GH(s) is given in Figure 92.
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To preserve unity feedback we may use block diagram manipulation. The next form
of the system then becomes as in Figure 93 where G(s) is the open loop transfer func-

tion and

H,(s) = s(s + 2.494 F 1.316) ($1)

_R__;()____.s.gse | . 6(s) —>

Hi(s) l4—

Figure 93. The Form of The System With Unity Feedback.

To convert the feedback compensator to make it more realizable as a filter, we have
to choose the locations of the extra poles quite far away so they can not affect the -

transient behaviour of the system. If we put the extra poles into the svstem form shown

in Figure 91 we gct the required gain easilv. The new syvstem then becomes as in .
Figure 94.
R ¢ C
G(s) >
H2(s)

Figure 94. System With Extra Poles
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G(s) 1s the open loop transfer function and

K(s + 2.998)(s + 0.995 F j0.998)
Hy(s) = : (82)
(s 4+ 300)(s + dOV)(s + 500)

To {ind the value of the K we get the tabulated root locations of the Root-Locus for

the loop transfer function GI{,(s),which is shown in Figure 95.
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The Root-locus gain K to bring the roots where we want them was
K=1.1257119 x 10" . By using the same manipulation as in Figure 93 if we redraw the
block diagram of the system to preserve the unity feedback we get the final compensated

svstem shown in Figure 96.

R s (O)——sGiE—()—{ 6 >

H3(s) [4—]

Figure 96. Final Compensated System

G(s) i1s the open loop transfer function and

_ 5956 % 11257119 x 10
(s + 300)(s + 400)(s + S00)

Gy(s)

11257119 x 1075(s + 2.494 4 j1.316)
(s 4+ 300)(s + dO0)(s + 500)

I15(s) = (84)

The time responses for state feedback and for the filter compensated case are given
Figures 97 and 98. As we may see from the transient responses since all roots are very
close to the desired places the time responses are almost exactly same. The onlyv disad-
vantage of this configuration may be to build two identical sets of poles to use in dif-

ferent places.

C. EXTENDING THE IDEA TO CASCADE COMPENSATION

The procedure for root placement with the feedback filter used only the loop transfer
function. We may compensate the system with the same components and same gain by
using cascade compensation. If we investigate the systems, the characteristic equations
are the same with the filter in either the feedback path or in the {orward path. Except

this time instead of the poles, the zeros of the filter are the zeros of the closed loop
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transfer function but the roots of the closed loop transfer function are in the same places
as with the feedback compensation scheme.
To show the result of this idea we chose the same plants. For the first one if we put

the same filter in the forward path the system becomes as in Figurc 99, where

Hi(s)[—l Gfs) 41:1

Figure 99. Cascade Compensated System

_ 1000 .
Gls) = s(s+ I)(s+ 2)(s+ 10) (83)

1.905459 x 107(s + 1 Fj2)(s + 4)

Th(9) = = 3300)6 + 400)Gs + 500

(80)

The time response for this system is given in Figure 100. As we may see the time
responses and oscillatory frequencies are almost identical with the feedback compen-
sation time response which is shown in Figure 90. In this configuration because of the
derivatives due to the cascade zeros we have faster rise time.

We checked the roots of the svstems for both the feedback and the cascade conlig-

uration. They were identical within 0.37 % difference.
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The second plant becomes as in Figure 101 if we put the compensator in the for-

ward path, where

H2(s)|—w{ G(s)

Figure 101, Cascade Compensated Second System

_ 1000
O = -G + 296+ 20) (87)
1257 0'(: T )
Iy(s) = LI2S7THI9 X 10 (s+ 1 Fj)(s+ 3) (88)

(5 +300)(s + 400)(s + 500)

The time response for this case is given in Figure 102. Again as we may see the time
response is essentiaily the same as that of the feedback configuration which is shown in
Figure 98. Here again we have a faster rise time because of derivatives in the cascade
filter,

As we may see from the Figures 99 and 100 we put the filter belore the plant in both
cases and we used the DSL (Dynamic Simulation Language) which behaves the same
way with the hardware.

Then we decided to simulate the syvstems with ALCON (Simulation program for
personal computers). This program uses arithmethic polynomial calculations to calculate
the step responses for the systems.
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The resulting time responses from this program for both problems are given in Fig-
ures 103 and 1C4. As we see high frequency ripples exist for a short time period which
we didn't see in the DSL sunulation.

To investigate the reason for this differcnce we interchanged the blocks in Figures
99 and 100, that is, we fed the error signal into the G block and the output from the G
block into the H block. For this combination resulting step responses are given in Fig-
ures 105 and 106 which are identical with the time responses we obtained from ALCOXN.

For these DSL simulation cases, in the [irst case the filter is belore plant, the plant
works as Low-Pass filter and the high frequency ripples are not present, but in the sec-
ond case the filter follows plant, and the ripples appear in the output.

We could not decide which one of the simulations is true. According to linear the-
ory, changing the places of the plants should not aflect to the behaviour of the system.

To investigate the reason for this difference is left as a recommendation.

As a result of these examples we may generalize the design steps as follows :

I. Select N - I desired roots.
Multiply them and find the H(s).

Find Gli(s) and get the characteristic cquation.

B oW oN

Find the roots of the characteristic equation. If they are acceptablv close to the
desired roots, use H(s) as a state feedback directly, otherwise go to SVS or another
computer program to find the state fecedback coeflicients to put the roots exactly
at the desired places.

5. Choose the extra poles as far away as possible and put them in the denominator
of H(s).

6. Draw the Root-Locus for the loop transfer fuinction GII(s) (including the extra
poles) and get the tabulated data.

7. Sclect the appropriate gain to have the system roots in the desired places (generally
this will be very high gain).

8. 1f the purpose is to design a cascade filter, put the resulting filter directly in the
forward path. Otherwise perform the block diagram manipulation as shown in the
examples and preserve the unity feedback.
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V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

In this thesis, the development of a procedure to design the fecdback compensators
bv using Root-Locus methods and pole placement mcthods has been presented. Simu-
lation results and worked out examples have shown that except for extremely high order
svstems designing the compensators with the Root-Locus method can be used for anv
plant. The most important result is to design them using pole placement concepts and
to be able to use them either in cascade or in the forward path.

Sinulation results have also shown that the compensator can be determined by a
Function Minimization subroutine directiv from the transfer function of an ideal plant

based on given specifications.

B. RECONMDMIENDATIONS

1. Further rescarch should mnvestigate methods to satisfv certain specifications while
designing compensators with the Root-Locus mcthod.

2. In this thesis, it has been shown that Function Mininnzation can be used to design
compensators, but the user should write his own program according to the param-
eters. A package program mayv be written for the main frame to make the procedure
mnieractive and faster.

3. Further research mav mvestigate the cffect of gain variations on the root Jocations
while using a pole placement method so one can use directly multiplication of de-
sired roots as Hs).
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APPENDIX A. CONSTRAINT PARAMETERS OF FUNCTION
MINIMIZATION

Subroutine HOOKE uses the Hooke and Jeeves “direct search” method to find the
local maximum or minimum of a multi-paramcter criterion function, CI*. {Ref. 3j.

The algorithm evaluates CF at a base point, X' = (X(1), ..., A(:Y)), then perturbs each
parameter in turn, by the amount + STEP(/), and evaluates CF at each new point.

If none of these points produces a better value of CF, then the stepsizes are de-
creased by a factor of BETA, and the process is repeated.

To use HOOKE, the user must initialize the following arguments and, in the main
program, CALL  HOOKE(X,STEP,NITMAX,CFTOLALPHABETA,CF,Q.QQ.
WIPRINT.MINMAX)

All of these arguments must be inttialized in MAIN, except for X. CI', Q, QQ. and
W. Recommended values for ALPHA and BETA a-e ALPHA = 2., BETA = 0.3, All
of the arravs, t.e.. X, STEP, Q. QQ and W, must be declared and dimensioned in MAIN.

The arguments and their meanings may be explained as following.

X = The arrav of N parameter values. The user must supply the initial guesses, ei-
ther in the DSL program or in MAIN.

STEP = An array of dimension N containing the initial step sizes to be used in the
scarch.

N = The number of parameters (a positive integer, at most 13).

ITMAX = The maximum number of function calls to be performed.

CFTOL = The error in the criterion function to be reached before the program
terminates ( diflerence between the current value and the previous stage value).

ALPHA = The factor of (Y - X) which is added to Y to get XNLEW,; a number
greater than or equal to 1.

BETA = The stepsize reduction factor; a number between 0 and 1.

CF = The value of the criterion function.

Q. QQ. W = Arrays of dimension N, to be used as work space. They must be de-
clared and dimenstoned in the main program.

IPRINT = An integer flag. 0 for no intermediate printout, 1 for intermediate

printout of N, CF, the number of function evaluation and notification of step-reduction.

+
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MINMAX = Ap integer flag,
mumn.

-1 searches for a minimum, + ! searches for maxi-
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APPENDIX B. COMPUTER PROGRANM FOR FUNCTION
MINIMIZATION

*This program finds the necessary parameters to fit the function to some
*special transient response. By changing zeta and omgn the standart time
*response may be generated.

D COMMON /HANDJ/FLAG,ERRFN,A1,A2,B1,B2
TITLE Rocket parameters
% FUNCTION MINIMIZATION

*Put initial conditions according to the previous assuming parameters.

INCON A10=2.,A20=5.,B10=1.,B20=100.

*Define your arrays to simulate your system

ARRAY P(1),Q(2),A(1),B(2),D(5),E(5),F(1),G(3),H(9),L(11),K(2),...
M(2),Y(3),2(3),5(2),T(4)

*Put the values for the array coefficients

TABLE A(1)=333.,B(1-2)=1.,333.,D(1-5)=1.,92.,18340. ,984000. ,...
51200000. ,E(1-5)=1.,60.,19510. ,558300. ,74368000. ,...
F(1)=2750.,G(1-3)=1.,42.2,2750. ,H(1-9)=1. ,40.652,...
2949.22,1048754.7,1. B6426E+08,3. 9622E+09,1. 17521E+11,...
2.12662E+12,1. 10017E+14,L(1-11)=1. ,53. 12,30506. 757,. ..
1378867. ,1.83946E+08,5. 2509E+09,3. 42441E+11,2. 85168E+12,. ..
1.43994E+14,1. 06498E+13,-3. 42095E+14 ,K(1-2)=13.3,39.9,...
M(1-2)=1.,30.,P(1)=25.,Q(1-2)=1.,100. ,Y(1)=1. ,2(1)=1.,...
S$(1-2)=10.,50.,T(1-4)=1. ,4.,8.,0.

PARAM R=1.

*Changing zeta and omgn chang=s the specifications of your system

CONST ZETA=0.40, OMGN=6.0,1C=0.0

INITIAL
*This part of the program generates the standart time response
TOTERR=0. 0

C1=SQRT(1. 0-ZETA*ZETA)

C2=0MGN-*ZETA

C3=0MGN-+*C1

PHI=ATAN(C1/ZETA)
* ASSIGN INITIAL GUESS FOR FUNCTION MINIMIZATION
*This part gives the starting point to the program

IF (FLAG.GE.0.) GO TO 10

A1=A10

IF (FLAG.GE.O0.) GO TO 10

A2=A20

IF (FLAG.GE.O0.) GO TO 10

B1=B10

IF (FLAG.GE.O0.) GO TO 10

B2=B20

10 CONTINUE

*Put your variable coefficients here so program can change it

Y(2)=A1

Y(3)=A2

2(2)=B1

Z(3)=B2
*Write normal simulation program for your system
DERIVATIVE
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X0=TRNFR(8,10,0. ,H,L,X2%2, 849)
X2=TRNFR(0,2,0. ,F,G,X3)

X3=TRNFR(4,4,0. ,D,E,X4)
X4=TRNFR(0,1,0. ,A,B,X6)
X6=15. *ERG
ERG=ER-X9
X9=TRNFR(2,2,0.,Y,Z,X0)
ER=R-X0
DYNAMICS
. *Standart time response is generated by this formula
STD=1. 0-(EXP(-C2*TIME)/C1)*SIN(C3*TIME+PHI)
ERR=X0-STD

ERRSQ=ERR*ERR
TOTERR=INTGRL( 0. ,ERRSQ)
*As a cost function integral of error square is used
TERMINAL
*This part finishes the calculation when min value is reached.
ERRFN = TOTERR
CONTRL FINTIM=2. ,DELT=0. 01
END
STOP
FORTRAN
*From now on just declare your step values and amount of variables
¥ MAIN PROGRAM FOR FUNCTION MINIMIZATION
IMPLICIT REAL*8 (A-H,0-2)
DIHENSION X(4),STEP(4),Q(4),QQ(4),W(4)
c X(1)=K,X(2)=P INITIAL VALUES IN DSL ROUTINE
STEP(1)=0. 5D0
STEP(2)=5.0D0
STEP(3)=0. 5D0
STEP(4)=10. 0DO

4 —<

ITMAX = 100
CFTOL = 1.0D-6
. ALPHA = 2.0D0
BETA = 0.5D0
IPRINT = 0
MINMAX = -1
CALL HOOKE(X,STEP,N,ITMAX,CFTOL,ALPHA,BETA,
% CF,Q,QQ,W, IPRINT,MINMAX)
STOP
END
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